

Integration of Systemic and Targeted Therapies in the Management of Oligometastatic SBRT

Barbara Alicja Jereczek-Fossa MD PhD

European Institute of Oncology and University of Milan, Italy

barbara.jereczek@ieo.it @BarbaraJereczek

DISCLOSURES

This lecture is suppored by the Accuray fee

ALL OUTSIDE THE CURRENT LECTURE:

Research funding:

AIRC Italian Association for Cancer Research (institutional grants),

FIEO-CCM & FUV (institutional grants)

Accuray (institutional grant)

IBA (institutional grant)

Travel expenses or speaker fees:

Janssen, Ferring, Bayer, Roche, Astellas, Elekta, Carl Zeiss, Ipsen, Accuray, IBA

AGENDA

1. Combine or not to combine?

2. Toxicity of a combination
 3. Play safe:

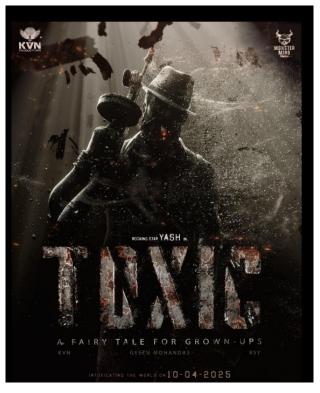
Pausing and balancing

Safe SBRT

This image is available from the United States <u>Library of Congress</u>'s <u>Prints and Photographs division</u> under the digital ID <u>cph.3g06529</u>

Safe targeted therapy administration

AGENDA


1. Combine or not to combine?

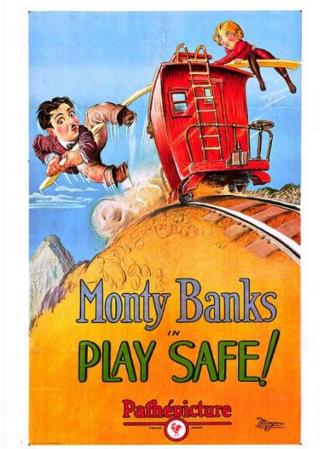
2. Toxicity of a combination

3. Play safe:

Pausing and balancing

Safe SBRT

https://www.imdb.com/title/tt27530512/mediaviewer /rm2391755521/?ref_=tt_ov_i


Safe targeted therapy administration

AGENDA

Combine or not to combine?
 Toxicity of a combination
 Play safe:

Pausing and balancing

Safe SBRT

https://en.wikipedia.org/wiki/Play_Safe

Safe targeted therapy administration

1. SBRT alone to postpone systemic therapy

versus

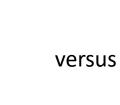
1. SBRT alone to postpone systemic therapy

versus

2. SBRT vs systemic therapy

1. SBRT alone to postpone systemic therapy

2. SBRT vs systemic therapy


3. SBRT vs SBRT + systemic therapy

versus

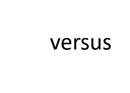
versus

1. SBRT alone to postpone systemic therapy

2. SBRT vs systemic therapy

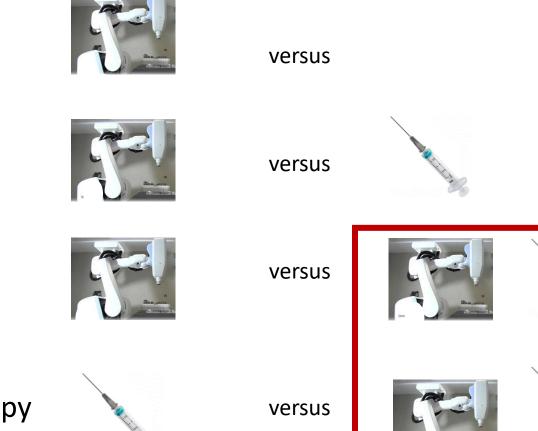
3. SBRT vs SBRT + systemic therapy

4. Systemic therapy vs SBRT + systemic therapy



versus

versus

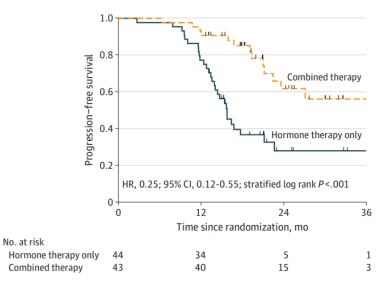

The winner is

1. SBRT alone to postpone systemic therapy

2. SBRT vs systemic therapy

3. SBRT vs SBRT + systemic therapy

4. Systemic therapy vs SBRT + systemic therapy

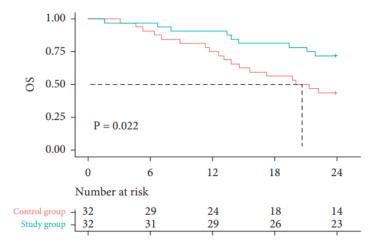



Combination is superior to SBRT or systemic therapy alone

JAMA Oncology | Original Investigation

Addition of Metastasis-Directed Therapy to Intermittent Hormone Therapy for Oligometastatic Prostate Cancer The EXTEND Phase 2 Randomized Clinical Trial

Chad Tang, MD; Alexander D. Sherry, MD; Cara Haymaker, PhD; Tharakeswara Bathala, MD; Suyu Liu, PhD; Bryan Fellman, MS; Lorenzo Cohen, PhD; Ana Aparicio, MD; Amado J. Zurita, MD; Alexandre Reuben, PhD; Enrica Marmonti, PhD; Stephen G. Chun, MD; Jay P. Reddy, MD, PhD; Amol Ghia, MD; Sean McGuire, MD, PhD; Eleni Efstathiou, MD; Jennifer Wang, MD; Jianbo Wang, MD; Patrick Pilie, MD; Craig Kovitz, MD; Weiliang Du, PhD; Samantha J. Simiele, PhD; Rachit Kumar, MD; Yerko Borghero, MD; Zheng Shi, MD, PhD; Brian Chapin, MD; Daniel Gomez, MD; Ignacio Wistuba, MD; Paul G. Corn, MD, PhD



Research Article

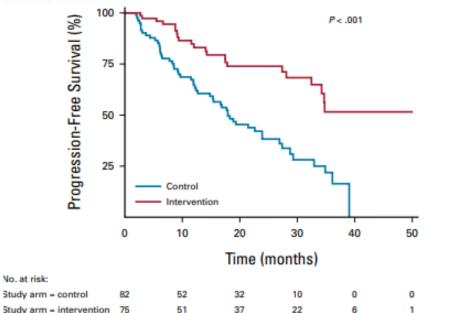
Apatinib plus Radiotherapy on the Expression of CEA and VEGF in Advanced Oligometastatic Non-Small-Cell Lung Cancer

Yanxing Zhu,¹ Zhiren Lin,² and Chengde Wu ³

HR 0.25

Is the future of OMD is combination and maybe intermittent?

A

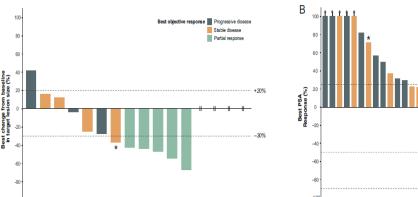

Original Reports | Genitourinary Cancer

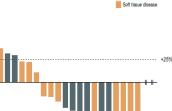
(E) Check for update

Stereotactic Body Radiation Therapy and Abiraterone Acetate for Patients Affected by Oligometastatic Castrate-Resistant Prostate Cancer: A Randomized Phase II Trial (ARTO)

Giulio Francolini, MD¹ ③; Andrea Gaetano Allegra, MD¹ ③; Beatrice Detti, MD¹; Vanessa Di Cataldo, MD¹ ③; Saverio Caini, MD³; Alessio Bruni, MD⁶ ④; Gianluca Ingrossa, MD¹ ④; Rolando Maria D'Angeilio, MD¹, Anna Rita Alitto, MD¹ ④; Matteo Augugliaro, MD⁵; Luca Triggiani, MD⁰; Silvana Parisi, MD¹⁹; Gaetano Facchini, MD¹¹ ⑥; Marco Banini, MD¹; Gabriele Simontacchi, MD¹⁰ ⓒ; Isacco Desideri, MD¹⁰ ⑥; Icro Mestini, MD⁰ ⊕; Richard K. Valicenti, MD¹⁹, and Lorenzo Livi, MD¹; on behalf of the ARTO Working Group members

DOI https://doi.org/10.1200/JCO.23.00985




EUROPEAN UROLOGY \$1 (2022) 253-262

Editorial by Umang Swami, Nicolas Sayegh and Neeraj Agarwal on pp. 263–265 of this issue

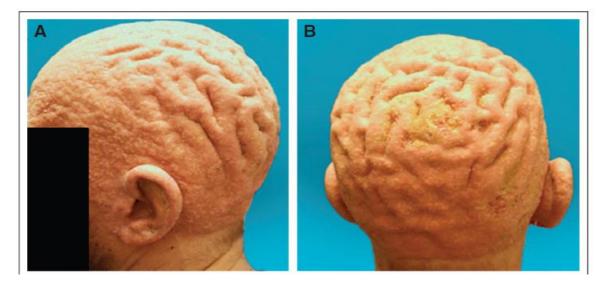
Avelumab Combined with Stereotactic Ablative Body Radiotherapy in Metastatic Castration-resistant Prostate Cancer: The Phase 2 ICE-PAC Clinical Trial

Edmond M. Kwan^{a,b}, Lavinia Spain^{c,d,e}, Angelyn Anton^{d,e,f}, Chun L. Gan^b, Linda Garrett^b, Deborah Chang^b, Elizabeth Liow^b, Caitlin Bennett^e, Tiantian Zheng^g, Jianjun Yu^g, Chao Dai^g, Pan Du^g, Shidong Jia^g, Heidi Fettke^{h,f}, Claire Abou-Seif^f, Gargi Kothari^k, Mark Shaw^{Lk}, Phillip Parente^{d,e}, Carrinel Pezaro^{d,e}, Ben Tran^{C,f,f}, Shankar Siva^{Lk}, Arun A. Azad^{a,c,L,*}

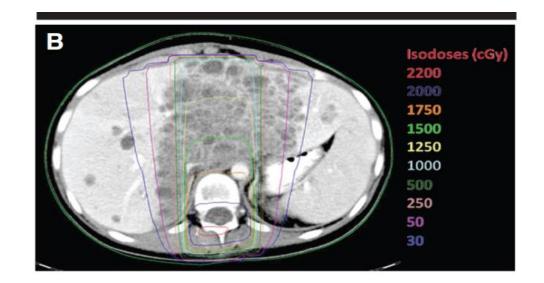
Measurable disease 📕 Bone -predominant

-50%

Niyazi *et al. Radiation Oncology* 2011, **6**:177 http://www.ro-journal.com/content/6/1/177

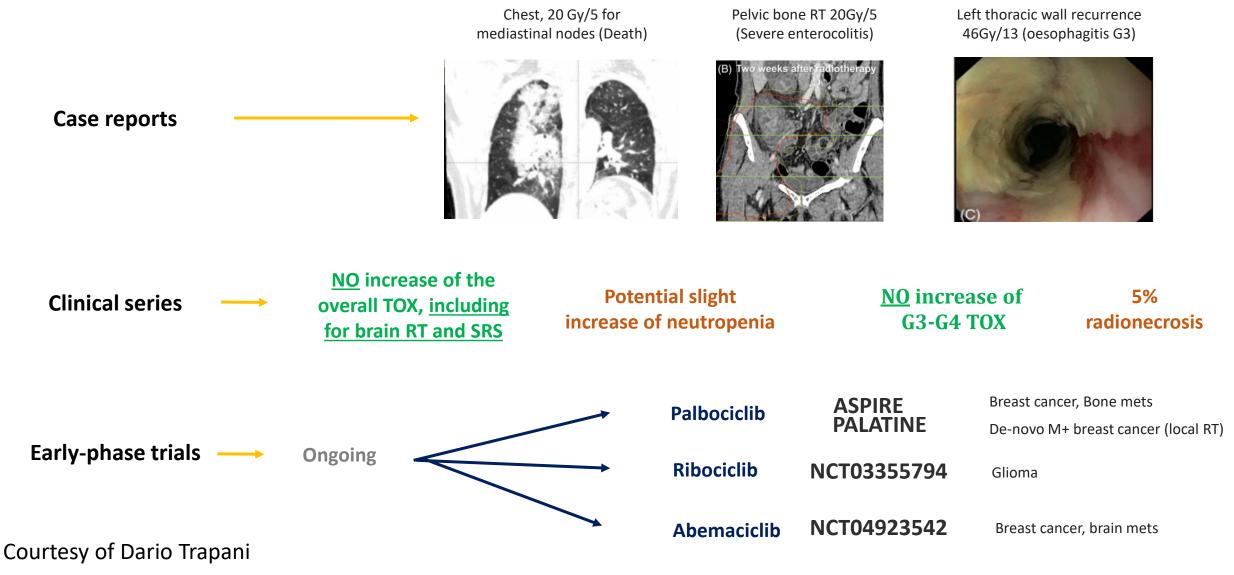


REVIEW


Open Access

Radiotherapy and "new" drugs-new side effects?

Maximilian Niyazi^{1†}, Cornelius Maihoefer^{1†}, Mechthild Krause², Claus Rödel³, Wilfried Budach⁴ and Claus Belka^{1*}



vemurafenib and RT Cutis Verticis Gyrata Harding JJ et al. JCO 2014

vemurafenib and RT Liver necrosis Anker CJ et al. JCO 2013

EVOLUTION example of M1 breast cancer and cyclin inhibitors

Van Aken, case reports 2021; David, Transl Oncol 2021; Kawamoto, Radiother Oncol 2019; Messer, Pol SocRadiatOncol 2019; Guerini, Sci Rep 2020; Meattini, JCO 2020; Chowdhari, Int J Rad Onc 2019; Ippolito, Breast Edinb Scotl 2019; Figura, J Neurooncol 2019; Meattini, The Breast 2018

CHALLENGES in studing combinations

- 1. Heterogeneity of locations
- 2. Heterogeneity of agents
- 3. Heterogeneity of indications and clinical scenarios

(de novo, oligorecurrent, previous therapy, CRPC, staging with conventional or next generation imaging etc)

Targeted agent elimination half-life as published by the

FDA (https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm)

Immune checkpoint inhibitors	t1/2
aPD-(L)1	
Nivolumab (Opdivo)	26.7d
Pembrolizumab (Keytruda)	26d
Durvalumab (Imfinzi)	18d
Avelumab (Bavencio)	6.1d
Atezolizumab (Tecentriq)	27d
Cemiplimab (Libtayo)	19d
aCTLA-4	
lpilimumab (CTLA4-i, Yervoy)	15.4d
Targeted therapy	
aEGFR/EGFRi	
Cetuximab (Erbitux)	4.8d
Panitumumab (Vectibix)	7.5d
Erlotinib (Tarceva)	36.2h
Osimertinib (Tagrisso)	48h
Gefitinib (Iressa)	48h
Afatinib (Giotrif)	37h
Dacomitinib (Vizimpro)	70h
aVEGFR	
Bevacizumab (Avastin)	20d
Ramucirumab (Cyramza)	15d

ALK/ROS1/NTRKi	
Alectinib (Alecensa)	30.7-32.5h
Ceritinib (Zykadia)	41h
Crizotinib (Xalkori)	42h
Lorlatinib (Lorbrena)	24h
Brigatinib (Alunbrig)	25h
Larotrectinib (Vitrakvi)	2.9h
mTKI	
Sunitinib (Sutent)	40-110h
Sorafenib (Nexavar)	20-27h
Lenvatinib (Lenvima)	28h
Pazopanib (Votrient)	30.9h
Axitinib (Inlyta)	2.5-6.1h
Cabozantinib (Cabometyx/Cometriq)	99h
Regorafenib (Stivarga)	28-51h
mTORi	
Everolimus (Afinitor)	30h
Temsirolimus (Torisel)	17.3h

HER2i/aHER2	
Lapatinib (Tykerb)	24h
Trastuzumab (Herceptin)	5.8d
Ado-trastuzumab emtansine	4d
Pertuzumab (Perjeta)	18d
PARPi	
Olaparib (Lynparza)	11.9-14.9h
Rucaparib (Rubraca)	17h
Niraparib (Zejula)	36h
Talazoparib (Talzenna)	90h
BRAFi/MEKi	
Vemurafenib (Zelboraf)	57h
Dabrafenib (Tafinlar)	2.6-8h
Trametinib (Mekinist)	3.9-4.8d
Encorafenib (Braftovi)	3.5h
Binimetinib (Mektovi)	3.5h
CDK4/6i	
Palbociclib (lbrance)	29h
Ribociclib (Kisqali)	32h

2.5 h–27 daysaxitinibatezolizumab

Kroeze S et al. Lancet Oncol 2023 (supplementary material)

3-7 May 2024

Glasgow, UK

Policy Review

۵ 🕷

Check for updates

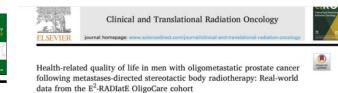
Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium

Stephanie G C Kroeze*, Matea Pavic*, Karin Stellamans, Yolande Lievens, Carlotta Becherini, Marta Scorsetti, Filippo Alongi, Umberto Ricardi, Barbara Alicja Jereczek-Fossa, Paulien Westhoff, Jasna But-Hadzic, Joachim Widder, Xavier Geets, Samuel Bral, Maarten Lambrecht, Charlotte Billiet, Igor Sirak, Sara Ramella, Ivaldi Giovanni Battista, Sergi Benavente, Almudena Zapatero, Fabiola Romero, Thomas Zilli, Kaouthar Khanfir, Hossein Hemmatazad, Berardino de Bari, Desiree N Klass, Shaukat Adnan, Heike Peulen, Juan Salinas Ramos, Michiel Striibos Saniay Popat, Piet Ost, Matthias Guckenberge

Stereotactic body radiotherapy (SBRT) for patients with metastatic cancer, especially when characterised by a low Lancet Oncol 2023; 24: e121-32

Radiotherapy and Oncology 190 (2024) 109966

Guidelines


ESTRO clinical practice guideline: Stereotactic body radiotherapy for spine metastases

M Guckenberger^{a,*}, N Andratschke^a, C Belka^{b,c,d}, D Bellut^e, F Cuccia^f, M Dahele^g, RS Guninski^a, M Josipovic^{h,i}, P Mancosu^j, G Minniti^{k,s}, M Niyazi^t, U Ricardi¹, P Munck af Rosenschold^m, A Sahgalⁿ, Y Tsang^o, WFAR Verbakel^p, F Alongi^{q, r}

International multidisciplinary consensus on the integration 🕆 🔘 of radiotherapy with new systemic treatments for breast cancer: European Society for Radiotherapy and Oncology (ESTRO)-endorsed recommendations

Icro Meattini, Carlotta Becherini, Saverio Caini, Charlotte E Coles, Javier Cortes, Giuseppe Curigliano, Evandro de Azambuja, Clare M Isacke, Nadia Harbeck, Orit Kaidar-Person, Elisabetta Marangoni, Birgitte V Offersen, Hope S Rugo, Viola Salvestrini, Luca Visani, Andrea Morandi, Matteo Lambertini, Philip Poortmans*, Lorenzo Livi*, on behalf of the Consensus Panellist Group†

Novel systemic therapies for breast cancer are being rapidly implemented into clinical practice. These drugs often have Lancet Oncol 2024; 25: e73-E

Renée Bultijnck ^{a, b,}, Mieke Van Hemelrijck ^c, Valérie Fonteyne ^{a, b}, Lorenzo Livi ^{d, e}, Barbara Alicja Jereczek-Fossa ^{f,g}, Hossein Hemmatazad^h, Michael Mayinger¹, Heike Peulen¹, Luc Verbeke^k, Sara Ramella^{1,m}, Pablo Castroⁿ, Pelagia Tsoutsou^o, Karin Stellamans^p, Adnan Shaukat⁴, Miha Orazem⁷, Paul Jeene⁵, Pètra Braam¹, Helena Verkooijen¹¹, Inga-Malin Simek 7, Filippo Alongi 77, Enrico Clementel 7, Catherine Fortpied 7 Abigirl Machingura^x, Felix Boakye Oppong^x, Matthias Guckenberger^{1,1}, Piet Ost^{a,y,1}

Practical Radiation Oncology® (2023) 13, 393-412

Clinical Practice Guideline

Treatment of Oligometastatic Non-Small Cell Lung Cancer: An ASTRO/ESTRO Clinical Practice Guideline

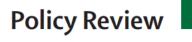
Puneeth Iyengar, MD, PhD,^{a,*} Sean All, MD,^a Mark F. Berry, MD,^b Thomas P. Boike, MD,^c Lisa Bradfield, BA,^d Anne-Marie C. Dingemans, MD, PhD,^e Jill Feldman, MA,^f Daniel R. Gomez, MD,⁹ Paul J. Hesketh, MD,¹ Salma K. Jabbour, MD,ⁱ Melenda Jeter, MD, MPH,^{j,†} Mirjana Josipovic, PhD,^k Yolande Lievens, MD, PhD,¹ Fiona McDonald, MD,^m Bradford A. Perez, MD,ⁿ Umberto Ricardi, MD,^o Enrico Ruffini, MD,^p Dirk De Ruysscher, MD, PhD,^q Hina Saeed, MD,^r Bryan J. Schneider, MD,⁵ Suresh Senan, MRCP, FRCR, PhD,^t Joachim Widder, MD, PhD,^u and Matthias Guckenberger, MD^v

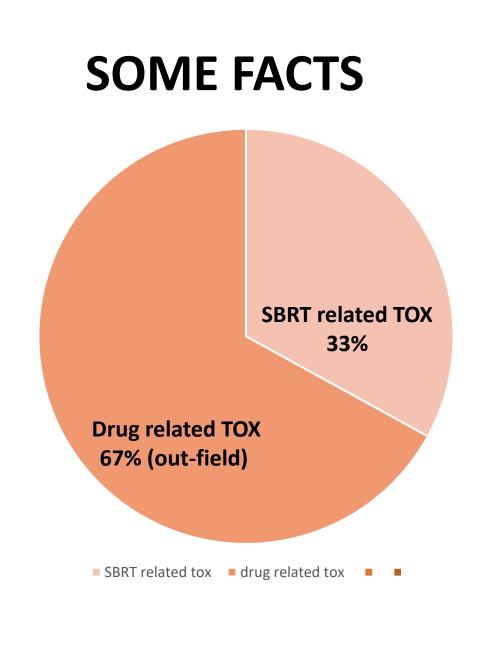
Matthias Guckenberger, Piet Ost on behalf of the OligoCare project

OligoCare

Matthias Guckenberger, Piet Ost on behalf of the OligoCare project

BEORTC


Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium


Stephanie G C Kroeze*, Matea Pavic*, Karin Stellamans, Yolande Lievens, Carlotta Becherini, Marta Scorsetti, Filippo Alongi, Umberto Ricardi, Barbara Alicja Jereczek-Fossa, Paulien Westhoff, Jasna But-Hadzic, Joachim Widder, Xavier Geets, Samuel Bral, Maarten Lambrecht, Charlotte Billiet, Igor Sirak, Sara Ramella, Ivaldi Giovanni Battista, Sergi Benavente, Almudena Zapatero, Fabiola Romero, Thomas Zilli, Kaouthar Khanfir, Hossein Hemmatazad, Berardino de Bari, Desiree N Klass, Shaukat Adnan, Heike Peulen, Juan Salinas Ramos, Michiel Strijbos, Sanjay Popat, Piet Ost, Matthias Guckenberger

Stereotactic body radiotherapy (SBRT) for patients with metastatic cancer, especially when characterised by a low Lancet Oncol 2023; 24: e121-32

ESTRO and EORTC OligoCare registry project (EORTC 1822, first cohort of the joint EORTC–ESTRO Radiation Infrastructure for Europe EORTC 1811 study; NCT03818503)

4338 records identified through 3 additional records identified database searching through other sources 1483 duplicates excluded 2858 records screened 2473 records excluded 385 full-text articles assessed for eligibility 277 full-text articles excluded 11 in the same cohort 38 in which toxicity was not described 144 received no SRT 46 in which patient started targeted therapy >1 month before, or not clearly described 1 patient aged <18 years 37 received cerebral SRT only 108 studies included in qualitative synthesis

Kroeze S et al. Lancet Oncol 2023

G3 tox in 560(21%) of 2675 patientsG4 tox in 28(1%) patientsG5 tox in 26(1%) patients

SBRT-induced toxicity was most frequently observed in

- nivolumab–ipilimumab in the thorax 26%
- multikinase inhibitors 22%
- cetuximab in the cervical area 15%
- •
- bevacizumab in the abdominal area 12%
- ipilimumab in the thorax 12%
- ipilimumab in the abdomen 10%

1. Whether systemic therapy can be delivered <u>on the</u> <u>same day</u> as SBRT or not

2. Whether there is a **preferred time interval between** the SBRT and the systemic therapy

3. Whether the <u>dose of SBRT and number of</u> <u>fractions</u> is reduced when delivered concomitantly with systemic therapy

1. Whether systemic therapy can be delivered on the same day as SBRT or not

CAN BE GIVEN ON THE SAME DAY:

Anti-HER2 monoclonal antibodies

NOT ON THE SAME DAY:

anti-CTLA4 (ipilimumab) plus anti-PD-1 (nivolumab) anti-VEGF and anti-EGFR monoclonal antibodies small molecules EGFRi BRAFi/MEK PARPi

Other: no consensus

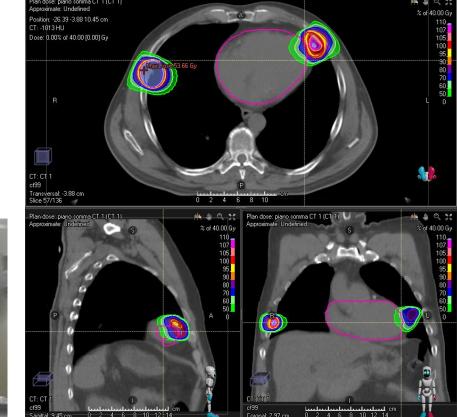
Kroeze S et al. Lancet Oncol 2023

2. Whether there is a preferred time interval between SBRT and systemic therapy

No omission: anti-HER2 monoclonal antibodies, anti-PDL-1

one week:

anti-CTLA4 (ipilimumab) plus anti-PD-1 (nivolumab) anti-VEGF and anti-EGFR monoclonal antibodies **two weeks:** BRAFi/MEK **omit one cycle:** monoclonal antibodies anti-VEGF


Others: no consensus

Kroeze S et al. Lancet Oncol 2023

3. Whether the dose of SBRT and number of fractions is reduced when delivered concomitantly with systemic therapy

Consensus: NO CHANGE IN SBRT

Practical Radiation Oncology® (2021) 11, e355-e365

Topic Discussion

Organ at Risk Dose Constraints in SABR: A Systematic Review of Active Clinical Trials

Serenna G. Gerhard, BHSc (candidate),^a David A. Palma, MD, PhD,^a,* Andrew J. Arifin, MD,^a Alexander V. Louie, MD, PhD,^b George J. Li, HBSc,^c Faiez Al-Shafa, MD,^d Patrick Cheung, MD,^b George B. Rodrigues, MD, PhD,^a Carol W. Bassim, DMD, MSc, MHSc,^e and Mark T. Corkum, MD, MSc^b

OARs Constraints review from 85 trials using:

Timermann et al UK SABR Hanna et al AAPM Hy-TEC etc **Table 5**Comparison of modal 5 fraction dose constraints included in our study with AAPM-TG 101, Timmerman, NRG-BR001,and the UK Consensus Guidelines

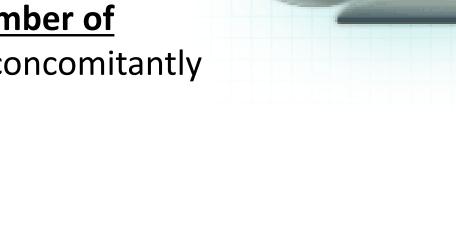
		Mode of included	AAPM-TG 101	Timmerman	NRG-BR001	UK Consensus
		studies		i minerman	THE DROOT	CIX Consensus
		Volume	Volume	Volume	Volume	Volume
0	D					
Organ	Parameter	dose (Gy)	dose (Gy)	dose (Gy)	dose (Gy)	dose (Gy)
Colon	D_{max} (<0.1 cm ⁻)	38	38	38	40	
	$D0.5 \text{ cm}^3$	32				32
	$D20 \text{ cm}^3$	25	25	25	28.5	
Rectum	$D_{max} (<0.1 \text{ cm}^3)$	38	38	38	55	
	$D0.5 \text{ cm}^3$	30, 32				32
	$D3.5 \text{ cm}^3$	50			50	
	$D20 \text{ cm}^3$	25	25	25	32.5	
Bladder wall	D_{max} (<0.1 cm ³)	38	50	38	38	
	$D0.5 \text{ cm}^3$	38				38
	$D15 \text{ cm}^3$	18.3	30	18.3	20	18.3
Ureter	D_{max} (<0.1 cm ³)	45			45	
	$D0.5 \text{ cm}^3$	45				45
Penile bulb	D_{max} (<0.1 cm ³)	50		50		
	$D0.5 \text{ cm}^3$					50
	$D3 \text{ cm}^3$	30		30	30	30
Femoral heads	$D10 \text{ cm}^3$	30	30	30	30	30

Gerhard S et al. Pract Radiat Oncol 2021;11:e355-e365.

Comparison of modal 5 fraction dose constraints included in our study with AAPM-TG 101, Timmerman, NRG-BR001, Table 5 and the UK Consensus Guidelines

		Mode of included	AAPM-TG 101	Timmerman	NRG-BR001	UK Consensus
		studies				
		Volume	Volume	Volume	Volume	Volume
Organ	Parameter	dose (Gy)	dose (Gy)	dose (Gy)	dose (Gy)	dose (Gy)
Colon	D_{max} (<0.1 cm ⁻)	38	38	38	40	
	$D0.5 \text{ cm}^3$	32				32
	$D20 \text{ cm}^3$	25	25	25	28.5	
Rectum	D_{max} (<0.1 cm ³)	38	38	38	55	
	$D0.5 \text{ cm}^3$	30, 32				
	$D3.5 \text{ cm}^3$	50			50	
	$D20 \text{ cm}^3$	25	25	25	32.5	
Bladder wall	D_{max} (<0.1 cm ³)	38	50	38	38	
	$D0.5 \text{ cm}^3$	38				
	$D15 \text{ cm}^3$	18.3	30	18.3	20	
Ureter	D_{max} (<0.1 cm ³)					
	$D0.5 \text{ cm}^3$	WARNING:				
Penile bulb	D_{max} (<0.1 cm ³)	1. No clinica	al data mat	chad with	constrair	ntc
	$D0.5 \text{ cm}^3$					
	$D3 \text{ cm}^3$	2. Readers	should exer	cise prud	ence whe	n .
				•		

Femoral heads $D10 \text{ cm}^3$ reviewing and referencing such constraints.


Gerhard S et al. Pract Radiat Oncol 2021;11:e355-e365.

1. Whether systemic therapy can be delivered <u>on the</u> <u>same day</u> as SBRT or not

2. Whether there is a **preferred time interval between** the SBRT and the systemic therapy

3. Whether the <u>dose of SBRT and number of</u> <u>fractions</u> is reduced when delivered concomitantly with systemic therapy

4. Drug dose reduction?

Benefits

Risks

Meattini I et al. Cancer Treat rev 2022

Recommendations based on preclinical and clinical evidence on how to properly integrate RT with approved drugs in breast cancer

Recommendations based on preclinical and clinical available evidence on how to properly integrate radiation therapy with approved drugs for breast cancer.

Family drug	Drug	Preclinical Effectiveness	Clinical Toxic effect	LoE°	Recommendation concomitant treatment	Drug 5-half-lives, days*
CDK4/6i	Palbociclib	Increased	Increased	4	Cautionary	5.8
	Ribociclib	Increased	Increased		Cautionary	6.7
	Abemaciclib	Increased	Increased		Cautionary	5
PI3Ki	Alpelisib	Increased	Uncertain	4	Unsuitable	1.9
mTORi	Everolimus	Increased	Increased		Unsuitable	6.2
Anti-HER	Trastuzumab	Increased	Safe	3	Suitable	175
	Pertuzumab	Increased	Safe		Suitable	90
	Lapatinib	Increased	Safe		Suitable	5
	T-DM1	Uncertain	Uncertain/Safe		Cautionary	20
PARPi	Olaparib	Increased	Increased	4	Unsuitable	3.1
	Talazoparib	Increased	Increased		Unsuitable	18.7
Immunotherapy	Atezolizumab	Uncertain	Safe	4	Suitable	135
	Pembrolizumab	Uncertain	Safe		Suitable	110

International multidisciplinary consensus on the integration 🗼 🧕 of radiotherapy with new systemic treatments for breast cancer: European Society for Radiotherapy and Oncology (ESTRO)-endorsed recommendations

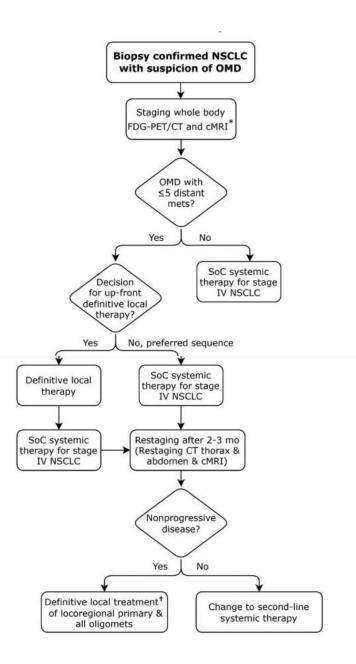
40 panellists

Icro Meattini, Carlotta Becherini, Saverio Caini, Charlotte E Coles, Javier Cortes, Giuseppe Curigliano, Evandro de Azambuja, Clare M Isacke, Nadia Harbeck, Orit Kaidar-Person, Elisabetta Marangoni, Birgitte V Offersen, Hope S Rugo, Viola Salvestrini, Luca Visani, Andrea Morandi, Matteo Lambertini, Philip Poortmans*, Lorenzo Livi*, on behalf of the Consensus Panellist Group†

Novel systemic therapies for breast cancer are being rapidly implemented into clinical practice. These drugs often have Lancet Oncol 2024; 25: e73-83

Class	Agent	Adjuvant RT	Brain RT (WBRT or SRS)	Extracranial SBRT or palliation
CDK4/6	abemaciclib, palbo, ribo	Trial (100%)	Trial (92.5%)	ОК (90%)
PIK3 inhibitors		No (90%)	No (90%)	No (90%)
mTOR		No (95%)	No (95%)	No (95%)
Anti HER2 (no ACD)	trastuzumab, pertuzumab	Ok (100%)	Ok (97.5%)	
	lapatinib	Ok (85%)	Ok (87.5%)	
	newer tyrosine kinase inhibitors (ie, neratinib, tucatinib)	Trial (97.5%)	Trial (97.5%)	Trial (97.5%)
Antibody–drug conjugates	trastuzumab emtansine (T-DM1)	OK (92.5%)	No (90%)	
	trastuzumab deruxtecan	Trial (100%)	Trial (100%)	Trial (100%)
PARP inhibitors		Trial (97.5%)	Trial (80%)	Trial (80%)
Immunotherapy		Ok (95%)	Ok (92.5%)	Ok (92.5%)

Clinical Practice Guideline


Treatment of Oligometastatic Non-Small Cell Lung Cancer: An ASTRO/ESTRO Clinical Practice Guideline

Puneeth Iyengar, MD, PhD,^a,* Sean All, MD,^a Mark F. Berry, MD,^b Thomas P. Boike, MD,^c Lisa Bradfield, BA,^d Anne-Marie C. Dingemans, MD, PhD,^e Jill Feldman, MA,^f Daniel R. Gomez, MD,^g Paul J. Hesketh, MD,^h Salma K. Jabbour, MD,ⁱ Melenda Jeter, MD, MPH,^{j,†} Mirjana Josipovic, PhD,^k Yolande Lievens, MD, PhD,¹ Fiona McDonald, MD,^m Bradford A. Perez, MD,ⁿ Umberto Ricardi, MD,^o Enrico Ruffini, MD,^p Dirk De Ruysscher, MD, PhD,^q Hina Saeed, MD,^r Bryan J. Schneider, MD,^s Suresh Senan, MRCP, FRCR, PhD,^t Joachim Widder, MD, PhD,^u and Matthias Guckenberger, MD^v

EST<u>RO</u>

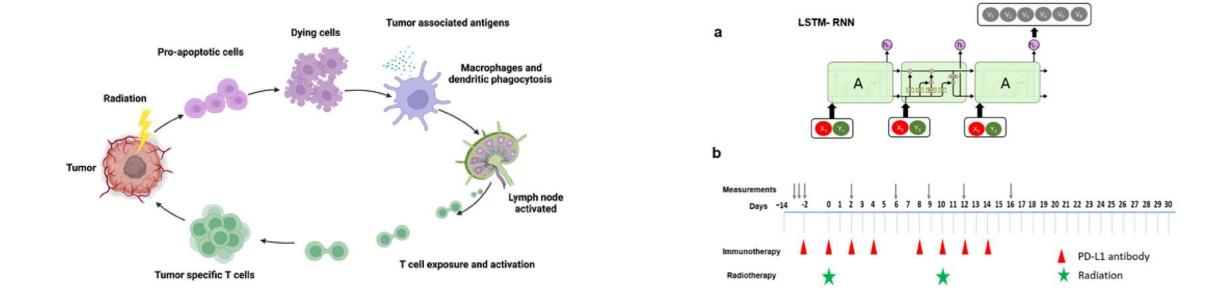
European SocieTy for Radiotherapy & Oncology

Table 5 Sequencing and timing of treatment therapies for oligometastatic NSCLC

Strength of Recommendation	Quality of Evidence (refs)
Strong	Moderate 8,35
Strong	Low 56
Strong	Expert Opinion
Conditional	Low 8,35
	Recommendation Strong Strong Strong

https://ace.globalintegrity.org/projects/drugtheft/

https://fotoget.pl/znaczenie-linii-horyzontu


https://doi.org/10.1038/s41598-024-58684-6 www.nature.com/scientificreports

scientific reports

Check for updates

OPEN An AI-based approach for modeling the synergy between radiotherapy and immunotherapy

Hao Peng^{1,2^{IXI}}, Casey Moore³, Yuanyuan Zhang¹, Debabrata Saha¹, Steve Jiang^{1,2} & Robert Timmerman¹

TAKE HOME MESSAGES

- 1. Combination is becoming routine
- 2. Balancing is based on
- pausing rules
- safe SBRT (constraints, technology)
- 3. Predictive markers of toxicity are needed

THANK YOU

barbara.jereczek@ieo.it @BarbaraJereczek

UNIVERSITÀ DEGLI STUDI DI MILANO